Integral membrane protein expression of human CD25 on the cell surface of HEK293 cell line: the available cellular model of CD25 positive to facilitate in vitro developing assays

Author:

Dehbashi Moein1,Hojati Zohreh1,Motovali-bashi Majid1,Ganjalikhani-Hakemi Mazdak23,Shimosaka Akihiro4

Affiliation:

1. Division of Genetics, Department of Biology, Faculty of Sciences, University of Isfahan, Postal Code: 81746-73441, Isfahan, Iran

2. Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Postal Code: 81746-73461, Isfahan, Iran

3. Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran

4. Institute of Hematology, Peking Union Medical College, Beijing, China

Abstract

AbstractTypically, CD25 is expressed on the cellular surface of regulatory T (Treg) cells. These cells are significant in regulating the self-tolerance and also preventing the immune system from attacking a person’s own tissues and cells. They promote the cancer progression by playing an important role in evading the immune system. Thus, the experimental procedures was aimed to clone and express human CD25 in HEK293 cell line, as the available cellular model, for the purpose of developing assays to facilitate and enhance the studies on an available CD25 positive cell. The secondary RNA structure of CD25 was evaluated by in silico analysis. Then, cDNA of human CD25 were synthesized from isolated total mRNA of cultured and stimulated PBMCs from blood donors. After cloning the cDNA of CD25 into a pcDNA3.1(+) plasmid, using the effective transfection of the recombinant pcDNA3.1(+) in HEK293, qRT-PCR and flow cytometry methods were used to quantitatively evaluate CD25 transcripts and protein level. There was a 4.8 fold increase in transcripts and a 76.2% increase in protein levels of CD25 when comparing the transfected and control cell lines. The genetically engineered HEK293 cell line expressing Treg cell surface marker of CD25 was introduced in this study for the first time. This cell line can be used to overcome the problematic issues for studying Treg cells including low population of Tregs in peripheral blood, low recovery methods for Treg isolation, time-consuming and non-cost benefit methods in the conditions of in vitro cell culture experiments for the studies focused on the binding of IL-2 to CD25.

Publisher

Walter de Gruyter GmbH

Subject

Cellular and Molecular Neuroscience,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3