Affiliation:
1. Carnegie Mellon University, Statistics and Data Science , Pittsburgh, PA 15213 , USA
2. Pittsburgh Penguins , Pittsburgh, PA 15213 , USA
Abstract
Abstract
Existing methods for player evaluation in American football rely heavily on proprietary data, are often not reproducible, lag behind those of other major sports, and are not interpretable in terms of game outcomes. We present four contributions to the study of football statistics to address these issues. First, we develop the R package nflscrapR to provide easy access to publicly available play-by-play data from the National Football League (NFL). Second, we introduce a novel multinomial logistic regression approach for estimating the expected points for each play. Third, we use the expected points as input into a generalized additive model for estimating the win probability for each play. Fourth, we introduce our nflWAR framework, using multilevel models to isolate the contributions of individual offensive skill players in terms of their wins above replacement (WAR). We assess the uncertainty in WAR through a resampling approach specifically designed for football, and we present results for the 2017 NFL season. We discuss how our reproducible WAR framework can be extended to estimate WAR for players at any position if researchers have data specifying the players on the field during each play. Finally, we discuss the potential implications of this work for NFL teams.
Subject
Decision Sciences (miscellaneous),Social Sciences (miscellaneous)
Reference67 articles.
1. Alamar, B. 2010. “Measuring Risk in NFL Playcalling.” Journal of Quantitative Analysis in Sports 6(2). https://doi.org/10.2202/1559-0410.1235.
2. Albert, J. 2006. “Pitching Statistics, Talent and Luck, and the Best Strikeout Seasons of All-Time.” Journal of Quantitative Analysis in Sports 2(1). https://doi.org/10.2202/1559-0410.1014.
3. Balreira, E. C., B. K. Miceli, and T. Tegtmeyer. 2014. “An Oracle Method to Predict NFL Games.” Journal of Quantitative Analysis in Sports 10:183–196.
4. Bates, D., M. Machler, B. Bolker, and S. Walker. 2015: “Fitting Linear Mixed-Effects Models Using lme4.” Journal of Statistical Software 67:1–48.
5. Baumer, B., and P. Badian-Pessot. 2017. “Evaluation of Batters and Base Runners”. Pp. 1–37 in Handbook of Statistical Methods and Analyses in Sports, edited by J. Albert, M. E. Glickman, T. B. Swartz and R. H. Koning, Boca Raton, Florida: CRC Press.
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献