Maxwell's Equations and Einstein-Gravity in the Planck Aether Model of a Unified Field Theory

Author:

Winterberg F.1

Affiliation:

1. Desert Research Institute, University of Nevada System, Reno, Nevada

Abstract

Abstract In the Planck aether substratum model it is assumed that space is densely filled with both positive and negative Planck masses described by a nonlinear nonrelativistic operator field equation. With-out expenditure of energy this substratum can form a lattice of vortex rings, with the vortex core radius equal the Planck length. The vortex ring radius is determined by a universal minimum energy quantum Reynolds number, making the ring radius and lattice spacing about 10 3 -10 4 times larger than the Planck length. The zero point fluctuations of the Planck masses bound in the vortex filaments become the source of virtual compression waves, which if quantized lead to Newton's law of gravitation, including the correct value for the gravitational constant. This scalar gravitational force couples the vortex rings, which thereby can transmit two types of transverse waves through the vortex lattice. The first type involves the tilting of the vortex rings and can be described by Maxwell's electromagnetic field equations. The second type involves the elliptic deformation of the rings and can be described by Einstein's gravitational field equations. Einstein gravity is therefore explained as resulting from the symmetric, and Maxwell's electromagnetism from the antisymmetric distor-tions of the Planck aether. Special relativity follows as a dynamic symmetry for objects held together by electromagnetic forces, and general relativity if these objects are placed in a gravitational field. Both special and general relativity, though, turn out to be low energy approximations, breaking down near the Planck scale, eliminating all divergences and singularities. Finally, the large difference between the electromagnetic and gravitational coupling constants is quantitatively explained to result from the negative masses in the Planck aether.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3