Catalytic hydrogenolysis of ethanol organosolv lignin

Author:

Nagy Máté,David Kasi,Britovsek George J.P.,Ragauskas Arthur J.

Abstract

Abstract The production of ethanol based on lignocellulosic materials will bring about the coproduction of significant amounts of under-utilized lignin. This study examines the potential of conventional heterogeneous and novel homogeneous catalysts for the selective cleavage of the aryl-O-aryl and aryl-O-aliphatic linkages of ethanol organosolv lignin to convert it from a low grade fuel to potential fuel precursors or other value added chemicals. The development of hydrogenolysis conditions that effectively increase the solubility of lignin were initially examined with Ru(Cl)2(PPh3)3 and demonstrated the ability to decrease the molecular weight and enhance the solubility of the lignin polymer. Later studies examined several heterogeneous and homogeneous hydrogenation catalysts at optimized reaction conditions resulting in 96.4% solubility with Ru(Cl)2(PPh3)3, increase in H/C ratio with Raney-Ni, Pt/C and extensive monomer formation with NaBH4/I2. The changes in molecular structure of lignin were followed by size exclusion chromatography, qualitative and quantitative NMR spectroscopy and elemental analysis. These studies demonstrated that aryl-O-aryl and aryl-O-aliphatic linkages could be cleaved and the hydrogenated lignin had a decrease in oxygen functionality and the formation of products with lower oxygen content.

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3