The IAB-SMART-Mobility Module: An Innovative Research Dataset with Mobility Indicators Based on Raw Geodata

Author:

Zimmermann Florian1ORCID,Filser Andreas1ORCID,Haas Georg-Christoph1ORCID,Bähr Sebastian1ORCID

Affiliation:

1. Institute for Employment Research , Nuremberg , Germany

Abstract

Abstract The ubiquity of smartphones has enabled the collection of novel data through their built-in sensors, including geolocation data which can be used to understand mobility behavior. In this project, we leveraged longitudinal geolocation data collected from participants in the 2018 German app study IAB-SMART to develop a set of mobility indicators, such as visited unique locations and traveled distance. The indicators can be linked to the Panel Study Labour Market and Social Security (PASS) survey and administrative employment histories. The resulting novel dataset offers a unique opportunity to study the relationship between mobility and labor market outcomes. This article provides an overview of the study, outlines the data preparation process, and the socio-demographic characteristics of the 398 participants of the IAB-SMART-Mobility module. We present the mobility indicators generated from the geolocation data and provide guidance for accessing the Institute for Employment Research’s (IAB) data.

Funder

BERD@NFDI

Publisher

Walter de Gruyter GmbH

Subject

Economics and Econometrics,Social Sciences (miscellaneous),General Business, Management and Accounting

Reference19 articles.

1. Altschul, S., Bähr, S., Beste, J., Collischon, M., Coban, M., Dummert, S., Frodermann, C., Gleiser, P., Gundert, S., Küfner, B., et al.. (2023). Panel Arbeitsmarkt und soziale Sicherung (PASS) – Version 0621 v2. Forschungsdatenzentrum der Bundesagentur für Arbeit (BA) im Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nuremberg.

2. Antoni, M. and Bethmann, A. (2019). PASS-ADIAB–linked survey and administrative data for research on unemployment and poverty. Jahrb. Natl. Stat. 239: 747–756, https://doi.org/10.1515/jbnst-2018-0002.

3. Bähr, S., Haas, G.C., Keusch, F., Kreuter, F., and Trappmann, M. (2022). Missing data and other measurement quality issues in mobile geolocation sensor data. Soc. Sci. Comput. Rev. 40: 212–235, https://doi.org/10.1177/0894439320944118.

4. Destatis (2023). Bevölkerung nach Altersgruppen 2011 bis 2021 in Prozent, Available at: https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bevoelkerung/Bevoelkerungsstand/Tabellen/bevoelkerung-altersgruppen-deutschland.html (Accessed 10 March 2023).

5. Eberle, J., Müller, D., and Heining, J. (2017). A modern job submission application to access IAB’s confidential administrative and survey research data. In: FDZ methodenreport, 1, 2017. Research Data Centre of the Federal Employment Agency (BA) at the Institute for Employment Research (IAB), Nuremberg.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data Observer—a guide to data that can help to inform evidence-based policymaking;AStA Wirtschafts- und Sozialstatistisches Archiv;2024-06-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3