Author:
Puzer Luciano,Barros Nilana M.T.,Paschoalin Thaysa,Hirata Izaura Y.,Tanaka Aparecida S.,Oliveira Marcelo C.,Brömme Dieter,Carmona Adriana K.
Abstract
Abstract
Cathepsin V is a lysosomal cysteine peptidase highly expressed in corneal epithelium; however, its function in the eye is still unknown. Here, we describe the capability of cathepsin V to hydrolyze plasminogen, which is also expressed in human cornea at levels high enough to produce physiologically relevant amounts of angiostatin-related molecules. The co-localization of these two proteins suggests an important role for the enzyme in the maintenance of corneal avascularity, essential for optimal visual performance. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis of plasminogen digestion by cathepsin V revealed the generation of three major products of 60, 50 and 40 kDa, which were electrotransferred to polyvinylidene difluoride membranes and excised for characterization. NH2-terminal amino acid sequencing of these fragments revealed the sequences EKKVYL, TEQLAP and LLPNVE, respectively. These data are compatible with cleavage sites at plasminogen F94–E95, S358–T359 and V468–L469 peptide bonds generating fragments of the five-kringle domains. In contrast, we did not detect any plasminogen degradation by cathepsins B, K and L. Using a Matrigel assay, we confirmed the angiogenesis inhibition activity on endothelial cells caused by plasminogen processing by cathepsin V. Our results suggest a novel physiological role for cathepsin V related to the control of neovascularization in cornea.
Subject
Clinical Biochemistry,Molecular Biology,Biochemistry
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献