Pre-clinical development of cell culture (Vero)-derived H5N1 pandemic vaccines

Author:

Howard M. Keith,Kistner Otfried,Barrett P. Noel

Abstract

AbstractThe rapid spread of avian influenza (H5N1) and its transmission to humans has raised the possibility of an imminent pandemic and concerns over the ability of standard influenza vaccine production methods to supply sufficient amounts of an effective vaccine. We report here on a robust and flexible strategy which uses wild-type virus grown in a continuous cell culture (Vero) system to produce an inactivated whole virus vaccine. Candidate vaccines based on clade 1 and clade 2 influenza H5N1 strains, produced at a variety of manufacturing scales, were demonstrated to be highly immunogenic in animal models without the need for adjuvant. The vaccines induce cross-neutralising antibodies and are protective in a mouse challenge model not only against the homologous virus but against other H5N1 strains, including those from other clades. These data indicate that cell culture-grown, whole virus vaccines, based on the wild-type virus, allow the rapid high-yield production of a candidate pandemic vaccine.

Publisher

Walter de Gruyter GmbH

Subject

Clinical Biochemistry,Molecular Biology,Biochemistry

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3