Generation of transducible versions of transcription factors Oct4 and Sox2

Author:

Bosnali Manal,Edenhofer Frank

Abstract

Abstract The transcription factors Oct4 and Sox2 are two of the main regulators of pluripotency in embryonic stem cells. Since the importance of non-genetic modification is continually increasing, particularly for therapeutic application of manipulated cells, the aim of the present study was to generate cell-permeant Oct4 and Sox2 proteins for the direct cellular delivery of active proteins. Protein transduction allowing cellular manipulation to circumvent genetic modification of target cells has recently been developed. We present a new expression vector system, pSESAME, that facilitates the generation of transducible proteins. Using pSESAME, both Oct4 and Sox2 were genetically fused with a TAT protein transduction domain that promotes cellular penetration. The recombinant purified Oct4 and Sox2 fusion proteins display DNA-binding properties comparable to their endogenous counterparts, and exhibit cellular entry and the ability to modulate the transcriptional machinery maintaining pluripotency of mouse embryonic stem cells. In a rescue assay we demonstrate that transducible Oct4 and Sox2 fusion proteins can compensate knockdown of Pou5f1 and Sox2, respectively. This study provides powerful tools for the modulation of stem cell properties without genetic interference.

Publisher

Walter de Gruyter GmbH

Subject

Clinical Biochemistry,Molecular Biology,Biochemistry

Reference41 articles.

1. and Coevolution of HMG domains and homeodomains and the generation of transcriptional regulation by Sox / POU complexes;Dailey;Cell Physiol,2001

2. and Cellular uptake of the tat protein from human immunodeficiency virus;Frankel;Cell,1988

3. Elevating the levels of Sox in embryonal carcinoma cells and embryonic stem cells inhibits the expression of Sox : Oct - target genes;Boer;Nucleic Acids Res,2007

4. et al A bivalent chromatin structure marks key devel - opmental genes in embryonic stem cells;Bernstein;Cell,2006

5. Repro - gramming of human somatic cells to pluripotency with defined factors;Park;Nature,2008

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3