Investigation of Mechanical and Anti-Corrosion Properties of Flame Sprayed Coatings

Author:

Musztyfaga-Staszuk M.1,Czupryński A.1,Kciuk M.2

Affiliation:

1. Silesian University of Technology , Welding Department , Gliwice , Poland

2. Silesian University of Technology , Institute of Engineering Materials and Biomaterials , Gliwice , Poland

Abstract

Abstract This article presents the results of an examination of the properties of thermal flame sprayed coatings produced by material in the form of four powders (two polymers: PA11 and PA12 CastoPlast, and two high purity: tin and aluminum) on the substrate of the unalloyed structural steel of S235JR grade. Investigations of coating properties are based on metallography tests (SEM and CLSM), measurement of microhardness (acc. to PN-EN ISO 6507-1:2007), anticorrosive (acc. to PN-EN ISO 9227:2017-06) and bend testing. Results demonstrate properties of flame sprayed coatings that are especially promising in the industrial applications where corrosion-resistant coating properties are required. Consequently, performed experiments show that the highest corrosion resistance is demonstrated by steel samples with a polyamide anti-corrosion system. Accelerated corrosion tests showed the lowest corrosion resistance of the tin coating system, however, they do not fully correspond to the corrosion processes in operating conditions.

Publisher

Walter de Gruyter GmbH

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. COATED POLYMERS -A REVIEW;International Journal of Modern Manufacturing Technologies;2022-12-20

2. Recent Advances in Design and Fabrication of Wear Resistant Materials and Coatings;Handbook of Research on Tribology in Coatings and Surface Treatment;2022

3. Influence of processing conditions on the properties of thermal sprayed coating: a review;Surface Engineering;2021-08-27

4. Properties of Flame Spraying Coatings Reinforced with Particles of Carbon Nanotubes;Advances in Materials Science;2021-03-01

5. Advances in Carbon Fiber Reinforced Polyamide-Based Composite Materials;Advances in Materials Science;2019-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3