Abstract
AbstractIn medical and other related sciences, clinical or experimental measurements usually serve as a basis for diagnostic, prognostic, therapeutic, and performance evaluations. Examples can be assessing the reliability of multiple raters (or measurement methods), assessing the suitability for tumor evaluation of using a local laboratory or a central laboratory in a randomized clinical trial (RCT), validating surrogate endpoints in a study, determining that the important outcome measurements are interchangeable among the evaluators in an RCT. Any elegant study design cannot overcome the damage by unreliable measurement. Many methods have been developed to assess the agreement of two measurement methods. However, there is little attention to quantify how good the agreement of two measurement methods is. In this paper, similar to the type I error and the power in describing a hypothesis testing, we propose quantifying an agreement assessment using two rates: the discordance rate and the tolerance probability. This approach is demonstrated through examples.
Subject
Statistics, Probability and Uncertainty,General Medicine,Statistics and Probability
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献