Multiple Sign Changing Solutions of Nonlinear Elliptic Problems in Exterior Domains

Author:

Clapp Mónica1,Salazar Dora1

Affiliation:

1. Instituto de Matemáticas Universidad Nacional Autónoma de México Circuito Exterior, C.U. 04510 México D.F., Mexico

Abstract

Abstract We consider the problem −Δu + (V + V(x))u = |u|p−2 u, u ∈ H0 1 (Ω), where Ω is an exterior domain in ℝN, V > 0, V ∈ C0(ℝN), infℝN V > −V and V(x) → 0 as |x| → ∞. Under symmetry conditions on Ω and V, and some assumptions on the decay of V at infinity, we show that there is an effect of the topology of the orbit space of certain subsets of the domain on the number of low energy sign changing solutions to this problem.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics,Statistical and Nonlinear Physics

Reference17 articles.

1. On the genus of representation spheres;Bartsch;Comment Math Helv,1990

2. Infinitely many nonradial solutions of a Euclidean scalar field equation;Bartsch;Funct Anal,1993

3. Positive solutions of some nonlinear elliptic problems in exterior domains Rational;Benci;Arch Mech Anal,1987

4. The principle of symmetric criticality;Palais;Comm Math Phys,1979

5. Multiple solutions of nonlinear scalar field equations Partial Differential Equations;Clapp;Comm,2004

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pinwheel solutions to Schrödinger systems;Orbita Mathematicae;2024-01-01

2. Positive solutions for Kirchhoff equation in exterior domains with small Sobolev critical perturbation;Complex Variables and Elliptic Equations;2023-06-05

3. Ground state solutions for electromagnetic Schrödinger equations on unbounded domains;Communications in Nonlinear Science and Numerical Simulation;2023-04

4. Normalized Solutions of Mass Subcritical Fractional Schrödinger Equations in Exterior Domains;The Journal of Geometric Analysis;2023-02-28

5. Symmetric positive solutions to nonlinear Choquard equations with potentials;Calculus of Variations and Partial Differential Equations;2022-02-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3