Design of a High-Quality Optical Filter Based on 2D Photonic Crystal Ring Resonator for WDM Systems

Author:

Fallahi Vahid1,Seifouri Mahmood1

Affiliation:

1. Faculty of Electrical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran

Abstract

AbstractIn this article, a 2D photonic crystal (PC)-based optical filter has been designed using a PC ring resonator. The resonator used is of square type with a square lattice constant, which has been designed by increasing the radius of the inner rods of the resonator. The filter designed can separate the light of the wavelength of 1545.3 nm with a transmission coefficient of 98 %. The bandwidth of the above wavelength is equal to 0.5 nm and hence the quality factor of the device at this wavelength is equal to 3091. The effects of the structural parameters, such as the refractive index, the lattice constant, the radius of the dielectric rods, the radius of the inner rods of the resonator on the behavior of the proposed device, are fully investigated. To obtain the photonic band gap, the plane wave expansion method is used. In addition, the finite difference time domain method is used to examine, simulate, and to obtain the output spectrum of the structure. The designed structure has both high transmission coefficient and quality factor. Comparatively speaking, it is also simple to design which justifies its use in other photonic crystal-based optical devices.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Reference84 articles.

1. Novel biosensor based on photonic crystal nano-ring resonator;Procedia Chem,2009

2. Photonic-crystal diplexers for terahertz-wave applications;Opt Express,2016

3. Optical filter based on photonic crystal;Indian J Pure Appl Phys (IJPAP),2015

4. Calculation of photon dispersion relations;Phys Rev Lett,1992

5. A nano-ring resonator based on 2-D hexagonal-lattice photonic crystals;Optical MEMS and Nanophotonics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3