Affiliation:
1. Nano photonic and Optoelectronic Research Laboratory (NORLab), Shahid Rajaee Teacher Training University, Tehran16788-15811, Iran
2. Faculty of Electrical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran
3. Department of Electronics and Communication, Sri Krishna College of Technology, Coimbatore641 042, India
Abstract
AbstractIn the present study, the propagation of electromagnetic waves in a square-lattice photonic crystal waveguide (PCW) is investigated using the finite-difference time-domain (FDTD) method. Then, the plane wave expansion (PWE) method is utilized to calculate the 2D photonic crystal band structure. To realize the desired waveguide, nano-line defects are introduced. The results of the numerical simulations and optimization scanning indicate that for the proposed photonic crystal structure consisting of silicon circular dielectric rods with a radius of 84 nm, a band gap can be achieved in the wavelength range of 1.34 μm<λ<1.93 μm. This wavelength range covers E, S, C, L, and U communication bands. Subsequently, by eliminating the rods in four parts of the structure, an all-optical 4-channel splitter can be designed. The numerical simulation results indicate that by coupling a light source to the main path of the structure and propagating it through each channel, the powers of the 4 output facets become approximately the same. The output power of channels 1 and 2 equals to 24.5 % of the input power, and the output power of channels 3 and 4 is 21 % of the input power and the remaining 9 % is lost in the structure as the leakage power. Since the 1.55 μm wavelength is within the band gap, that is the telecommunication band C, this device can be used as a power splitter.
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献