Differential toxicities of albendazole and its two main metabolites to Balb/c 3T3, HepG2, and FaO lines and rat hepatocytes

Author:

Radko Lidia1,Minta Maria1,Stypuła-Trębas Sylwia1

Affiliation:

1. Department of Pharmacology and Toxicology, National Veterinary Research Institute, 24-100 Pulawy, Poland

Abstract

Abstract Introduction: The cytotoxicity of anthelmintic agent, albendazole (ABZ) and its two major metabolites, sulfoxide (ABZSO) and sulfone (ABZ-SO2), on non-hepatic Balb/c 3T3 line, two hepatoma cell lines (FaO, HepG2), and isolated rat hepatocytes was investigated. Material and Methods: Cell cultures were exposed for 24, 48, and 72 h to eight concentrations of the compounds ranging from 0.05 to 100 μg/mL (ABZ) and from 0.78 to 100 μg/mL (ABZ-SO and ABZ-SO2). Three different assays were applied in which various biochemical endpoints were assessed: lysosomal activity - neutral red uptake (NRU) assay, proliferation - total protein contents (TPC) assay and lactate dehydrogenase (LDH) leakage assay. Results: The most toxic was albendazole whose EC50 values calculated from the concentration effect curves ranged from 0.2 to 0.5 μg/mL (Balb/c 3T3 ) and from 0.4 to 73.3 μg/mL (HepG2). Rat hepatoma line and isolated rat hepatocytes were less sensitive to the impact of ABZ. Toxic action expressed as EC50 was recorded after 72 h exposure only in LDH release assay at 0.8 μg/mL and 9.7 μg/mL respectively. The toxicity of metabolites was much lower. The most sensitive to ABZ-SO were fibroblasts and EC50-72h values were similar in all three assays used, i.e. NRU (14.1 μg/mL), TPC (15.8 μg/mL), and LDH (20.9 μg/mL). In the case of ABZ-SO2 the mean effective concentrations were the highest, and could be reached only in one LDH assay. These values (μg/mL) were as follows: 65.3 (FaO), 65.4 (HepG2), 75.8 (hepatocytes), and 77.4 (Balb/c 3T3). Conclusion: The differences in in vitro toxicity of albendazole depend on metabolic ability of the cellular models. Primary cultured rat hepatocytes represent a valuable tool to study the impact of biotransformation on the cytotoxicity of drugs.

Publisher

Walter de Gruyter GmbH

Subject

General Veterinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3