Relationship between dissolved organic carbon and bacterial community in the coastal waters of Incheon, Korea

Author:

Wang Pengbin12,Joo Jae-Hyoung1,Park Bum Soo1,Kim Joo-Hwan1,Kim Jin Ho1,Han Myung-Soo1

Affiliation:

1. Department of Life Science, College of Natural Sciences , Hanyang University , 222 Wangsimniro, Seongdong-gu , Seoul , Republic of Korea

2. Key Laboratory of Marine Ecosystem and Biogeochemistry , The Second Institute of Oceanography, State Oceanic Administration (SOA) , Hangzhou , , China

Abstract

Abstract Bacteria constitute a large domain of prokaryotic microorganisms present in marine ecosystems and play a significant role in energy flow and nutrient cycling. Bacterial community changes may affect organisms of higher trophic levels. We conducted field monitoring to study the relationship between dissolved organic carbon (DOC) and the bacterial community in the coastal waters of Incheon, Korea. Results showed that abiotic factors, such as temperature, salinity, dissolved oxygen (DO), pH, and dissolved inorganic nutrients, were not significantly different among the sampling sites during the study period. On the other hand, nutrient conditions were significantly different among the sites between 2012-2013 and 2014. Nitrogen was the limiting factor from 2012 to 2013, and phosphate in 2014. Biotic data showed that DOC affected both bacterial abundance and bacterial composition. A similar fluctuation pattern was observed for phytoplankton and Chlorophyll a. However, a close correlation was not observed between phytoplankton and other variables. Redundancy analysis (RDA) and Pearson correlation analysis of abiotic and biotic factors also showed that DOC concentration and bacterial abundance were correlated. Therefore, DOC appears to be an important factor affecting bacterial abundance and composition in the coastal waters of Incheon, Korea.

Publisher

Walter de Gruyter GmbH

Subject

Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3