Microbial and classic food web components under ice cover in eutrophic lakes of different morphometry and fisheries management

Author:

Kalinowska Krystyna1,Napiórkowska-Krzebietke Agnieszka2,Bogacka-Kapusta Elżbieta2,Hutorowicz Joanna2,Pyka Jakub2,Stawecki Konrad2,Kapusta Andrzej2,Chybowski Łucjan1

Affiliation:

1. Inland Fisheries Institute in Olsztyn , Department of Lake Fisheries , ul. Rajska 2, 11-500 Giżycko , Poland

2. Inland Fisheries Institute in Olsztyn , Department of Ichthyology, Hydrobiology and Aquatic Ecology , ul. Oczapowskiego 10, 10-719 Olsztyn , Poland

Abstract

Abstract The thickness and duration of ice cover are strongly influenced by global warming. The aim of this study was to determine chemical (organic carbon, total nitrogen and phosphorus concentrations) and biological (nanoflagellates, ciliates, phytoplankton, rotifers, crustaceans) parameters under the ice cover in three eutrophic lakes (Masurian Lake District, Poland), differing in their morphometry and fisheries management. All the studied groups of organisms showed high variability over a short time. Taxonomic composition of planktonic communities, except for rotifers and phytoplankton, was similar in all lakes. Nanoflagellates were dominated by autotrophic forms, while ciliates were primarily composed of small oligotrichs and prostomatids. Nano-sized diatoms and mixotrophic cryptophytes were the most important components of phytoplankton and they formed an under-ice bloom in one lake only. Rotifers were mainly represented by Keratella cochlearis, Polyarthra dolichoptera and Asplanchna priodonta. Among crustaceans, copepods clearly dominated over cladocerans. Our research suggests that winter was a very dynamic period. In the under-ice conditions, pelagic organisms were strongly dependent on each other. The shallow lake and the deeper, small lake differed significantly in nutrient and chlorophyll concentrations, ciliate and phytoplankton biomass and the ratio of autotrophic to heterotrophic biomass. These results suggest that morphometric parameters may affect planktonic organisms during the ice-covered period.

Publisher

Walter de Gruyter GmbH

Subject

Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3