Discriminating sediment and clear water over coastal water using GD technique

Author:

Amin Abd Rahman Mat1,Ahmad Fadhli2,Abdullah Khiruddin3

Affiliation:

1. Faculty of Applied Sciences, Universiti Teknologi MARA, Kampus Kuala Terengganu, 21080 Kuala Terengganu, Malaysia

2. School of Ocean Engineering, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia

3. School of Physics, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia

Abstract

Abstract Currently two algorithms are being used routinely by the MODIS Atmosphere and Ocean Team in order to distinguish sediment influence and clear water pixels over turbid water area. These two algorithms require complicated computational analyses. In this paper, a simple algorithm based on empirical technique to detect the sediment-influenced pixels over coastal waters is proposed as an alternative to these two algorithms. This study used apparent reflectance acquired from MODIS L1B product. This algorithm is based on the gradient difference of the line connecting the 0.47- and 1.24-μm channels and 0.47- and 0.66-μm channels of a log-log graph of the apparent reflectance values against MODIS wavelengths. Over clear-water areas (deep blue sea), the 0.47-, 0.66- and 1.24-μm channels fitted very well in line with correlation R > 0.99. Over turbid waters, a substantial increase of 0.66 μm in the reflectance leads to a low correlation value. By computing the difference between the gradient of the line connecting 0.47 and 0.66 μm and the gradient of the line connecting 0.47 and 1.24 μm, the threshold to discriminate turbid and shallow coastal waters from clear-water pixels can be obtained. If the gradient difference is greater than 0, the pixels were then marked as sediment-influenced pixels. This proposed algorithm works well for MODIS Terra and Aqua sensor. The comparison of this algorithm with an established algorithm also showed a good agreement.

Publisher

Walter de Gruyter GmbH

Subject

Ecology

Reference15 articles.

1. Ackerman, S., Strabala, K., Menzel, P., Frey, R., Moeller, C. & Gumley L. (2010). Discriminating clear-sky from cloud with MODIS algorithm theoretical basis document (MOD35). Wisconsin: MODIS Cloud Mask Team, Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin.

2. Aurin, D., Mannino, A. & Franz B. (2013). Spatially resolving ocean color and sediment dispersion in river plumes, coastal systems, and continental shelf waters. Remote Sens. Environ., 137, 212−225. DOI:10.1016/j. rse.2013.06.018.

3. Figueras, D., Karnieli, A., Brenner, A. & Kaufman Y.J. (2004). Masking turbid water in the southeastern Mediterranean Sea utilizing the SeaWiFS 510 nm spectral band. Int. J. Remote Sens., 25, 4051-4059. DOI: 10.1080/01431160310001657498.

4. Levy, R.C., Remer, L.A., Tanre’, D., Matoo, S. & Kaufman Y.J. (2009). Algorithm for remote sensing of tropospheric aerosol from MODIS: Collection 005 and 0.51. http://modis-atmos.gsfc.nasa.gov

5. Li, R.R., Kaufman, Y.J., Gao, B.C. & Davis C.O. (2003). Remote sensing of suspended sediments and shallow coastal waters. IEEE Transactions on Geoscience Remote Sensing, 41, 559−566. DOI:10.1109/TGRS.2003.810227.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3