Selective cytotoxic activity of isolated compounds from Globimetula dinklagei and Phragmanthera capitata (Loranthaceae)

Author:

Mfotie Njoya Emmanuel12ORCID,Maza Hermine L.D.3,Mkounga Pierre3,Koert Ulrich4,Nkengfack Augustin E.3,McGaw Lyndy J.1

Affiliation:

1. Department of Paraclinical Sciences, Faculty of Veterinary Science , University of Pretoria , Private Bag X04 , Onderstepoort, Pretoria 0110 , South Africa

2. Department of Biochemistry, Faculty of Science , University of Yaoundé I , PO Box 812 , Yaoundé , Cameroon

3. Department of Organic Chemistry, Faculty of Science , University of Yaoundé I , PO Box 812 , Yaoundé , Cameroon

4. Faculty of Chemistry , Philipps-Universität Marburg , Hans-Meerwein-Strasse 4 , D-35043 Marburg , Germany

Abstract

Abstract This study aimed to evaluate the selective cytotoxicity of six natural compounds on four cancerous cells (MCF-7, HeLa, Caco-2 and A549) and two normal intestinal and lung cells (Hs1.Int and Wl-38) cells. We also attempted to analyze basically the structure–activity relationships and to understand the mechanism of action of active compounds using the Caspase-Glo® 3/7 kit. Globimetulin B (2) isolated from Globimetula dinklagei was significantly cytotoxic on cancerous cells with 50% inhibitory concentrations (IC50) ranging from 12.75 to 37.65 μM and the selectivity index (SI) values varying between 1.13 and 3.48 against both normal cells. The compound 3-O-β-d-glucopyranosyl-28-hydroxy-α-amyrin (5) isolated from Phragmanthera capitata exhibited the highest cytotoxic activity on HeLa cells with the IC50 of 6.88 μM and the SI of 5.20 and 8.71 against Hs1.Int and Wl-38 cells, respectively. A hydroxyl group at C-3 of compounds was suggested as playing an important role in the cytotoxic activity. The induction of caspase-3 and -7 activity represents some proof that apoptosis has occurred in treated cells. Globimetulin B (2) selectively killed cancer cells with less toxicity to non-cancerous cells as compared to conventional doxorubicin therapy.

Publisher

Walter de Gruyter GmbH

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3