Functional analysis of amino acid residues at the dimerisation interface of KpnI DNA methyltransferase

Author:

Bheemanaik Shivakumara,Bujnicki Janusz M.,Nagaraja Valakunja,Rao Desirazu N.

Abstract

AbstractKpnI DNA-(N6-adenine) methyltransferase (M.KpnI) recognises the sequence 5′-GGTACC-3′ and transfers the methyl group fromS-adenosyl-L-methionine (AdoMet) to the N6 position of the adenine residue in each strand. Earlier studies have shown that M.KpnI exists as a dimer in solution, unlike most other MTases. To address the importance of dimerisation for enzyme function, a three-dimensional model of M.KpnI was obtained based on protein fold-recognition analysis, using the crystal structures of M.RsrI and M.MboIIA as templates. Residues I146, I161 and Y167, the side chains of which are present in the putative dimerisation interface in the model, were targeted for site-directed mutagenesis. Methylation andin vitrorestriction assays showed that the mutant MTases are catalytically inactive. Mutation at the I146 position resulted in complete disruption of the dimer. The replacement of I146 led to drastically reduced DNA and cofactor binding. Substitution of I161 resulted in weakening of the interaction between monomers, leading to both monomeric and dimeric species. Steady-state fluorescence measurements showed that the wild-type KpnI MTase induces structural distortion in bound DNA, while the mutant MTases do not. The results establish that monomeric MTase is catalytically inactive and that dimerisation is an essential event for M.KpnI to catalyse the methyl transfer reaction.

Publisher

Walter de Gruyter GmbH

Subject

Clinical Biochemistry,Molecular Biology,Biochemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3