Coupling de novo protein folding with subunit exchange into pre-formed oligomeric protein complexes: the ‘heritable template’ hypothesis

Author:

McMurray Michael A.1

Affiliation:

1. 1Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, 12801 E 17th Ave, Aurora, CO 80045, United States of America

Abstract

AbstractDespite remarkable advances in synthetic biology, the fact remains that it takes a living cell to make a new living cell. The information encoded in the genome is necessary to direct assembly of all cellular components, but it may not be sufficient. Some components (e.g. mitochondria) cannot be synthesized de novo, and instead require pre-existing templates, creating a fundamental continuity of life: if the template information is ever lost, the genomic code cannot suffice to ensure proper biogenesis. One type of information only incompletely encoded in the genome is the structures of macromolecular assemblies, which emerge from the conformations of the constituent molecules coupled with the ways in which these molecules interact. For many, if not most proteins, gene sequence is not the sole determinant of native conformation, particularly in the crowded cellular milieu. A partial solution to this problem lies in the functions of molecular chaperones, encoded by nearly all cellular genomes. Chaperones effectively restrict the ensemble of conformations sampled by polypeptides, promoting the acquisition of native, functional forms, but multiple proteins have evolved ways to achieve chaperone independence, perhaps by coupling folding with higher-order assembly. Here, I propose the existence of another solution: a novel mechanism of de novo folding in which the folding of specific proteins is templated by pre-folded molecules of a partner protein whose own folding also required similar templating. This hypothesis challenges prevailing paradigms by predicting that, in order to achieve a functional fold, some non-prion proteins require a seed passed down through generations.

Publisher

Walter de Gruyter GmbH

Subject

Cellular and Molecular Neuroscience,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3