An Ectonucleotide ATP-diphosphohydrolase Activity in Trichomonas vaginalis Stimulated by Galactose and Its Possible Role in Virulence

Author:

Jesus José Batista de1,Sá Pinheiroa Ana Acacia de1,Lopes Angela H. C. S.2,Meyer-Fernandesa José Roberto1

Affiliation:

1. Departamento de Bioquímica Médica, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, CCS, Bloco H, Cidade Universitária, Ilha do Fundão, 21541-590, Rio de Janeiro, RJ, Brazil

2. Instituto de Microbiologia Professor Paulo de Góes, UFRJ, Cidade Universitária, Ilha do Fundão, 21541-590, Rio de Janeiro, RJ, Brazil

Abstract

This work describes the ability of living Trichomonas vaginalis to hydrolyze extracellular ATP (164.0 ± 13.9 nmol Pi / h × 107 cells). This ecto-enzyme was stimulated by ZnCl2, CaCl2 and MgCl2, was insensitive to several ATPase and phosphatase inhibitors and was able to hydrolyze several nucleotides besides ATP. The activity was linear with cell density and with time for at least 60 min. The optimum pH for the T. vaginalis ecto-ATPase lies in the alkaline range. ᴅ-galactose, known to be involved in adhesion of T. vaginalis to host cells, stimulated this enzyme by more than 90%. A comparison between two strains of T. vaginalis showed that the ecto-ATPase activity of a fresh isolate was twice as much as that of a strain axenically maintained in culture, through daily passages, for several years. The results suggest a possible role for this ecto-ATPase in adhesion of T. vaginalis to host cells and in its pathogenicity.

Publisher

Walter de Gruyter GmbH

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3