Affiliation:
1. Institute of Mathematics, Polish Academy of Sciences, The Lódź Branch
2. Institute of Physics, University of Lódź
Abstract
Abstract
The authors propose to explain the magnetic moment of elementary particles by a suitable choice of one pseudo-riemannian manifold - the space of observations - and two general Riemannian manifolds - the spaces of the particle connected with the external electromagnetic and nuclear fields, respectively. By a general Riemannian manifold the authors understand a Riemannian manifold whose associated tensor field is allowed to be degenerate. In this way the mass of a particle as well as its electromagnetic and nuclear properties are determined by means of manifolds and mappings between the corresponding Hilbert spaces. A nuclear reaction is then to be interpreted as a mapping between the corresponding pseudo-riemannian manifolds and the associated general Riemannian manifolds. The proposal, competitive to the quantum field theory, presents a different way of describing the properties of physical objects. At the moment it is difficult to decide whether this proposal will lead to a satisfactory explanation of more physical phenomena than those explained by means of the quantum field theory, since it needs further research.
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献