Families of symmetric Cantor sets from the category and measure viewpoints

Author:

Balcerzak MarekORCID,Filipczak TomaszORCID,Nowakowski Piotr

Abstract

Abstract We consider the family {\mathcal{CS}} of symmetric Cantor subsets of {[0,1]} . Each set in {\mathcal{CS}} is uniquely determined by a sequence {a=(a_{n})} belonging to the Polish space {X\mathrel{\mathop{:}}=(0,1)^{\mathbb{N}}} equipped with probability product measure μ. This yields a one-to-one correspondence between sets in {\mathcal{CS}} and sequences in X. If {\mathcal{A}\subset\mathcal{CS}} , the corresponding subset of X is denoted by {\mathcal{A}^{\ast}} . We study the subfamilies {\mathcal{H}_{0}} , {\mathcal{SP}} and {\mathcal{M}} of {\mathcal{CS}} , consisting (respectively) of sets with Haudsdorff dimension 0, and of strongly porous and microscopic sets. We have {\mathcal{M}\subset\mathcal{H}_{0}\subset\mathcal{SP}} , and these inclusions are proper. We prove that the sets {\mathcal{M}^{\ast}} , {\mathcal{H}_{0}^{\ast}} , {\mathcal{SP}^{\ast}} are residual in X, and {\mu(\mathcal{H}_{0}^{\ast})=0} , {\mu(\mathcal{SP}^{\ast})=1} .

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Reference28 articles.

1. Some remarks on small sets;Ric. Mat.,2001

2. Some remarks on small sets;Ric. Mat.,2001

3. General approach to microscopic-type sets;J. Math. Anal. Appl.,2018

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. How large is the space of almost convergent sequences?;Journal of Mathematical Analysis and Applications;2023-10

2. Conditions for the Difference Set of a Central Cantor Set to be a Cantorval;Results in Mathematics;2023-06-22

3. When the algebraic difference of two central Cantor sets is an interval?;Annales Fennici Mathematici;2023-01-15

4. The Family of Central Cantor Sets with Packing Dimension Zero;Tatra Mountains Mathematical Publications;2021-10-01

5. Porosity properties of perturbed Cantor sets;Colloquium Mathematicum;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3