On Küneth’s correlation and its applications

Author:

Mdzinarishvili Leonard

Abstract

Abstract Let {\mathcal{K}} be an abelian category that has enough injective objects, let {T\colon\mathcal{K}\to A} be any left exact covariant additive functor to an abelian category A and let {T^{(i)}} be a right derived functor, {u\geq 1} , [S. Mardešić, Strong Shape and Homology, Springer Monogr. Math., Springer, Berlin, 2000]. If {T^{(i)}=0} for {i\geq 2} and {T^{(i)}C_{n}=0} for all {n\in\mathbb{Z}} , then there is an exact sequence 0\longrightarrow T^{(1)}H_{n+1}(C_{*})\longrightarrow H_{n}(TC_{*})% \longrightarrow TH_{n}(C_{*})\longrightarrow 0, where {C_{*}=\{C_{n}\}} is a chain complex in the category {\mathcal{K}} , {H_{n}(C_{*})} is the homology of the chain complex {C_{*}} , {TC_{*}} is a chain complex in the category A, and {H_{n}(TC_{*})} is the homology of the chain complex {TC_{*}} . This exact sequence is the well known Künneth’s correlation. In the present paper Künneth’s correlation is generalized. Namely, the conditions are found under which the infinite exact sequence \displaystyle\cdots\longrightarrow T^{(2i+1)}H_{n+i+1}\longrightarrow\cdots% \longrightarrow T^{(3)}H_{n+2}\longrightarrow T^{(1)}H_{n+1}\longrightarrow H_% {n}(TC_{*}) \displaystyle\longrightarrow TH_{n}(C_{*})\longrightarrow T^{(2)}H_{n+1}% \longrightarrow T^{(4)}H_{n+2}\longrightarrow\cdots\longrightarrow T^{(2i)}H_{% n+i}\longrightarrow\cdots holds, where {T^{(2i+1)}H_{n+i+1}=T^{(2i+1)}H_{n+i+1}(C_{*})} , {T^{(2i)}H_{n+i}=T^{(2i)}H_{n+i}(C_{*})} . The formula makes it possible to generalize Milnor’s formula for the cohomologies of an arbitrary complex, relatively to the Kolmogorov homology to the Alexandroff–Čech homology for a compact space, to a generative result of Massey for a local compact Hausdorff space X and a direct system {\{U\}} of open subsets U of X such that {\overline{U}} is a compact subset of X.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Reference28 articles.

1. Les groupes de Betti des espaces localement bicompacts;C. R. Acad. Sci. Paris,1936

2. The uniqueness theorem for cohomologies on the category of polyhedral pairs;Trans. A. Razmadze Math. Inst.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3