Quasilinear Elliptic Equations on Half- and Quarter-spaces

Author:

Dancer E.N.1,Du Yihong2,Efendiev Messoud3

Affiliation:

1. School of Mathematics and Statistics University of Sydney, NSW 2006, Australia

2. School of Science and Technology University of New England, Armidale, NSW 2351, Australia

3. Helmholtz Zentrum München, Institute für Biomathematik und Biometrie Ingostädter Landstrasse 1, D-85764 Neuherberg, Germany

Abstract

Abstract We consider quasilinear elliptic problems of the form Δpu + f(u) = 0 over the half-space H = {x ∈ ℝN : x1 > 0} and over the quarter-space Q = {x ∈ ℝN : x1 > 0, xN > 0}. In the half-space case we assume u ≥ 0 on ∂H, and in the quarter-space case we assume that u ≥ 0 on {x1 = 0} and u = 0 on {xN = 0}. Let u ≢ 0 be a bounded nonnegative solution. For some general classes of nonlinearities f , we show that, in the half-space case, limx1→∞ u(x1, x2, ..., xN) always exists and is a positive zero of f ; and in the quarter-space case, where V is a solution of the one-dimensional problem ΔpV + f(V) = 0 in ℝ+, V(0) = 0, V(t) > 0 for t > 0, V(+∞) = z, with z a positive zero of f . Our results extend most of those in the recent paper of Efendiev and Hamel [6] for the special case p = 2 to the general case p > 1. Moreover, by making use of a sharper Liouville type theorem, some of the results in [6] are improved. To overcome the difficulty of the lack of a strong comparison principle for p-Laplacian problems, we employ a weak sweeping principle.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics,Statistical and Nonlinear Physics

Reference6 articles.

1. Asymptotic beavior of solutions of semilinear elliptic equations in unbounded domains : two approaches;Efendiev;Math,2011

2. Some remarks on Louville type results for quasilinear elliptic equations;Dancer;Proc Math Soc,2003

3. Cauchy - Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities;Serrin;Acta Math,2002

4. Non - existence results and estimates for some nonlinear elliptic equa - tions;Bidaut;Anal Math,2001

5. Monotonicity for elliptic equations in unbounded Lipschitz domains Pure;Berestycki;Appl Math,1997

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3