Identification of hypoxia-immune-related signatures for predicting immune efficacy in triple-negative breast cancer

Author:

Wang Luping12ORCID,Han Haote1,Ma Jiahui2,Feng Yue2,Han Zhuo2,Maharaj Vinesh3,Tian Jingkui2,Zhu Wei2,Li Shouxin2,Shao Xiying4

Affiliation:

1. College of Biomedical Engineering & Instrument Science , Zhejiang University , Hangzhou 310027 , China

2. Chinese Academy of Sciences , Hangzhou Institute of Medicine , Hangzhou 310002 , China

3. Department of Chemistry, Faculty of Natural and Agricultural Science , University of Pretoria , Private Bag x20 , Pretoria 0028 , South Africa

4. Department of Breast Medical Oncology , Zhejiang University of Traditional Chinese Medicine Affiliated Cancer Hospital , Hangzhou 31000 , China

Abstract

Abstract Objectives The therapeutic effect against triple-negative breast cancer (TNBC) varies among individuals. Finding signatures to predict immune efficacy is particularly urgent. Considering the connection between the microenvironment and hypoxia, hypoxia-related signatures could be more effective. Therefore, in this study, we aimed sought to construct a hypoxia-immune-related prediction model for breast cancer and identify therapeutic targets. Methods Immune and hypoxia status in the TNBC microenvironment were investigated using single-sample Gene Set Enrichment Analysis (ssGSEA) and Uniform Manifold Approximation and Projection (UMAP). The least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analysis were employed to build a prognostic model based on hypoxia-immune-related differentially expressed genes. The Cancer Genome Atlas (TCGA) cohort, real-time quantitative polymerase chain reaction (qRT-PCR), and immunofluorescence staining were utilized to analyze the expression differences. Tumor immune dysfunction and exclusion indexes were used to indicate the effect of immunotherapy. Results We identified 11 signatures related to hypoxia and immunity. Among these genes, C-X-C motif chemokine ligand (CXCL) 9, 10, and 11 were up-regulated in TNBC tissues compared to normal tissues. Furthermore, CXCL9, 10, 11, and 13 were found to enhance the effect of immunotherapy. Conclusions These findings suggest the value of the hypoxia-immune-related prognostic model for estimating the risk in patients with TNBC, and CXCL9, 10, 11, and 13 are potential targets to overcome immune resistance in TNBC.

Funder

Key Research and Development Program of Zhejiang Province

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3