Microstructure of the Bonding Zone Between AZ91 and AlSi17 Formed by Compound Casting

Author:

Mola R.,Bucki T.,Dziadoń A.

Abstract

AbstractThis paper discusses the joining of AZ91 magnesium alloy with AlSi17 aluminium alloy by compound casting. Molten AZ91 was cast at 650°C onto a solid AlSi17 insert placed in a steel mould under normal atmospheric conditions. Before casting, the mould with the insert inside was heated up to about 370°C. The bonding zone forming between the two alloys because of diffusion had a multiphase structure and a thickness of about 200 μm. The microstructure and composition of the bonding zone were analysed using optical microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. The results indicate that the bonding zone adjacent to the AlSi17 alloy was composed of an Al3Mg2intermetallic phase with not fully consumed primary Si particles, surrounded by a rim of an Mg2Si intermetallic phase and fine Mg2Si particles. The bonding zone near the AZ91 alloy was composed of a eutectic (an Mg17Al12intermetallic phase and a solid solution of Al and Si in Mg). It was also found that the compound casting process slightly affected the AZ91 alloy microstructure; a thin layer adjacent to the bonding zone of the alloy was enriched with aluminium.

Publisher

Walter de Gruyter GmbH

Subject

Metals and Alloys,Industrial and Manufacturing Engineering

Reference19 articles.

1. The microstructure of the surface layer of magnesium laser alloyed with aluminum and silicon;Dziadoń;Mater Charact,2016

2. Investigation on interface of Al Cu couples in compound casting;Zare;Mater Sci Technol,2013

3. Light metal compound casting;Papis;Sci China Ser E Tech Sci,2009

4. Dissimilar joining of Al Mg light metals by compound casting process;Hajjari;Mater Sci,2011

5. Study of the interface between steel insert and aluminum casting in EPC;Choe;Mater Sci Technol,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3