Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies

Author:

De Feo Luca,Jao David,Plût Jérôme

Abstract

AbstractWe present new candidates for quantum-resistant public-key cryptosystems based on the conjectured difficulty of finding isogenies between supersingular elliptic curves. The main technical idea in our scheme is that we transmit the images of torsion bases under the isogeny in order to allow the parties to construct a shared commutative square despite the non-commutativity of the endomorphism ring. We give a precise formulation of the necessary computational assumptions along with a discussion of their validity, and prove the security of our protocols under these assumptions. In addition, we present implementation results showing that our protocols are multiple orders of magnitude faster than previous isogeny-based cryptosystems over ordinary curves. This paper is an extended version of [Lecture Notes in Comput. Sci. 7071, Springer (2011), 19–34]. We add a new zero-knowledge identification scheme and detailed security proofs for the protocols. We also present a new, asymptotically faster, algorithm for key generation, a thorough study of its optimization, and new experimental data.

Funder

NSERC CRD

Agence Nationale de la Recherche, ECLIPSES project

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Computational Mathematics,Computer Science Applications

Cited by 208 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automorphisms of the supersingular isogeny graph;Finite Fields and Their Applications;2024-01

2. A post-quantum key exchange protocol from the intersection of conics;Journal of Symbolic Computation;2024-01

3. Verifiable delay functions and delay encryptions from hyperelliptic curves;Cybersecurity;2023-11-08

4. Construction of confusion component based on the isogeny of elliptic curves;Multimedia Tools and Applications;2023-10-28

5. Shorter Post-quantum Secret Handshakes from Isogenies;2023 International Conference on Data Security and Privacy Protection (DSPP);2023-10-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3