On the growth analysis of meromorphic solutions of finite ϕ-order of linear difference equations

Author:

Datta Sanjib Kumar1,Biswas Nityagopal2

Affiliation:

1. Department of Mathematics, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India

2. Department of Mathematics, Chakdaha College, Chakdaha, Nadia, 741235, West Bengal, India

Abstract

AbstractIn this paper, we investigate some growth properties of meromorphic solutions of higher-order linear difference equationA_{n}(z)f(z+n)+\dots+A_{1}(z)f(z+1)+A_{0}(z)f(z)=0,where {A_{n}(z),\dots,A_{0}(z)} are meromorphic coefficients of finite φ-order in the complex plane where φ is a non-decreasing unbounded function. We extend some earlier results of Latreuch and Belaidi [Z. Latreuch and B. Belaïdi, Growth and oscillation of meromorphic solutions of linear difference equations, Mat. Vesnik 66 2014, 2, 213–222].

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Numerical Analysis,Analysis

Reference38 articles.

1. Einige Eindeutigkeitssätze in der Theorie der meromorphen Funktionen;Acta Math.,1926

2. Growth of meromorphic solutions of finite logarithmic order of linear difference equations;Fasc. Math.,2015

3. On growth of meromorphic solutions for linear difference equations;Abstr. Appl. Anal.,2013

4. Growth properties of solutions of complex linear differential-difference equations with coefficients having the same φ-order;Bull. Calcutta Math. Soc.,2019

5. Growth and oscillation related to a second order linear differential equation;Math. Commun.,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3