A global div-curl-lemma for mixed boundary conditions in weak Lipschitz domains and a corresponding generalized A 0 * \mathrm{A}_{0}^{*} - A 1 \mathrm{A}_{1} -lemma in Hilbert spaces

Author:

Pauly Dirk

Abstract

Abstract We prove global and local versions of the so-called {\operatorname{div}} - {\operatorname{curl}} -lemma, a crucial result in the homogenization theory of partial differential equations, for mixed boundary conditions on bounded weak Lipschitz domains in 3D with weak Lipschitz interfaces. We will generalize our results using an abstract Hilbert space setting, which shows corresponding results to hold in arbitrary dimensions as well as for various differential operators. The crucial tools and the core of our arguments are Hilbert complexes and related compact embeddings.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Numerical Analysis,Analysis

Reference80 articles.

1. On Friedrichs inequality, Helmholtz decomposition, vector potentials, and the div-curl lemma;Trends in Applications of Mathematics to Mechanics,2018

2. Compacité par compensation;Ann. Sc. Norm. Super. Pisa Cl. Sci. (4),1978

3. On the boundary value problems of electro- and magnetostatics;Proc. Roy. Soc. Edinburgh Sect. A,1982

4. Maxwell’s boundary value problem on Riemannian manifolds with nonsmooth boundaries;J. Math. Anal. Appl.,1974

5. A remark on the regularity of solutions of Maxwell’s equations on Lipschitz domains;Math. Methods Appl. Sci.,1990

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Traces for Hilbert complexes;Journal of Functional Analysis;2023-05

2. The elasticity complex: compact embeddings and regular decompositions;Applicable Analysis;2022-09-16

3. The index of some mixed order Dirac type operators and generalised Dirichlet–Neumann tensor fields;Mathematische Zeitschrift;2022-01-28

4. Continuous Dependence on the Coefficients II;Evolutionary Equations;2021-09-28

5. Complexes from Complexes;Foundations of Computational Mathematics;2021-03-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3