High birefringence low loss nearly zero flat dispersion similar to slotted core photonic crystal fibers

Author:

Jia Chunrong1,Zhang Qingyu1,Chen Zhipeng1,Tang Yukun1,Di Zhigang1

Affiliation:

1. College of Electrical Engineering , 128790 North China University of Science and Technology , Tangshan , Hebei 063210 , China

Abstract

Abstract Studying high-performance photonic crystal fibers (PCF) is of significant scientific importance for terahertz (THz) waveguide systems. This study introduces a novel PCF design with a core composed of the smallest sub-wavelength units resembling a slotted structure, aiming to achieve high birefringence and low loss. The optical properties of the proposed PCF are analyzed through simulations, yielding impressive results. The PCF exhibits an ultra-high birefringence of 0.07848, a minimum limiting loss of 10−17 dB/cm, and an effective material loss as low as 0.04251 cm−1. Moreover, it demonstrates near-zero flat dispersion of −0.012 ± 0.074 ps/THz/cm over a broad frequency range of 1.2–2.2 THz. This fiber stands out by not only providing high birefringence but also by striking an optimal balance among birefringence, transmission loss, and dispersion for THz waveguides. The implications of this work are profound for the development of THz communication systems, THz polarization-maintaining transmission, and sensing applications. Furthermore, it established an important benchmark for the design of THz-PCFs that prioritize high birefringence, low loss, and near-zero flat dispersion, offering an essential reference for future research and development in this field.

Funder

Science and Technology Research Project of Hebei Provincial Department of Education

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3