Local existence and blowing up phenomena for a class of non-autonomous partial functional differential equations with infinite delay

Author:

Diop Mamadou Abdoul1,Ezzinbi Khalil2,Kyelem Bila Adolphe3

Affiliation:

1. Université Gaston Berger, Unité de Formation et de Recherche de Sciences Appliquées et Technologie , Département de Mathématiques , B.P. 234, Saint-Louis, Sénégal,UMMISCO UMI 209 IRD/UPMC , Bondy , France

2. Université Cadi Ayyad, Faculté des Sciences Semlalia , Département de Mathématiques , B.P. 2390 , Marrakech , Morocco

3. Université de Ouahigouya, Unité de Formation et de Recherche en Sciences et Technologies , Département de Mathématiques et Informatique , B.P.346 Ouahigouya 01 , Burkina Faso

Abstract

Abstract In this work, we study a class of abstract non-autonomous partial functional differential equations with infinite delay. Our main results concern the local existence of the mild solution which can blow up at the finite time. The unbounded operators associated to the non-autonomous system are assumed to be stable family which generates C 0-semigroups while the nonlinear part is supposed to be continuous. Under Lipschitz condition on the nonlinear term of the equation, we prove the existence and uniqueness of the mild solution. For illustration, we provide an example for some reaction-diffusion non-autonomous partial functional differential equations involving infinite delay.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Numerical Analysis,Statistics and Probability,Analysis

Reference12 articles.

1. [1] Adimy, M. and Ezzinbi, K., Local existence and linearized stability for partial functional differential equations, Dyn. Systems Appl., 7, (1998), 389-404.

2. [2] Benkhalti, R. and Ezzinbi, K., Existence and stability in the α-norm for some partial functional differential equations with infinite delay, Differ. Integral Equ., Vol. 19, No 5, (2006), 545-572.

3. [3] DaPrato, G. and Sinestrari, E., Non autonomous evolution operators of hyperbolic type, Semigroup Forum, 45, (1992), 302-312.

4. [4] Friedman, A., Partial differential equation, Holt, Rinehat and Winston, New York,(1979)

5. [5] Hale, J. and Kato, J., Phase space for retarded equations with infinite delay, Funkcial. Ekvac., Vol.21, (1978), 11-41.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3