Affiliation:
1. Department of Mathematics , Sambalpur University , Jyoti Vihar, Burla, Sambalpur - 768019 , India
Abstract
Abstract
This work is concerned about the necessary and sufficient conditions for oscillation of solutions of 2-dimensional nonlinear neutral delay difference systems of the form:
Δ
[
x
(
n
)
+
p
(
n
)
x
(
n
−
m
)
y
(
n
)
+
p
(
n
)
y
(
n
−
m
)
]
=
[
a
(
n
)
b
(
n
)
c
(
n
)
d
(
n
)
]
[
f
(
x
(
n
−
α
)
)
g
(
y
(
n
−
β
)
)
]
,
\Delta \left[ {\matrix{ {x\left( n \right) + p\left( n \right)x\left( {n - m} \right)} \hfill \cr {y\left( n \right) + p\left( n \right)y\left( {n - m} \right)} \hfill \cr } } \right] = \left[ {\matrix{ {a\left( n \right)} \hfill & {b\left( n \right)} \hfill \cr {c\left( n \right)} \hfill & {d\left( n \right)} \hfill \cr } } \right]\,\,\left[ {\matrix{ {f\left( {x\left( {n - \alpha } \right)} \right)} \hfill \cr {g\left( {y\left( {n - \beta } \right)} \right)} \hfill \cr } } \right],
where m > 0, α ≥ 0, β ≥ 0 are integers, a(n), b(n), c(n), d(n), p(n) are real sequences and f, g ∈ 𝒞(ℝ, ℝ).
Subject
Applied Mathematics,Numerical Analysis,Statistics and Probability,Analysis