Affiliation:
1. Université Nazi BONI , Laboratoire de Mathématiques Informatique et Applications , Burkina-Faso
2. Centre Universitaire Polytechnique de Kaya , Université Joseph Ki-Zerbo, Laboratoire de Mathématiques et Informatique , Burkina-Faso
Abstract
Abstract
In this paper, we formulate a mathematical model of vector-borne disease dynamics. The model is constructed by considering two models : a baseline model of vector population dynamics due to Lutambi et al. that takes into account the development of the aquatic stages and the female mosquitoes gonotrophic cycle and an SI-SIR model describing the interaction between mosquitoes and human hosts. We briefly study the baseline model of vectors dynamics and, for the transmission model, we explicitly compute the equilibrium points, and by using the method of Van den Driesshe and J. Watmough, we derive the basic reproduction number ℛ0. Otherwise, thanks to Lyapunov’s principle, Routh-Hurwitz criteria and a favorable result due to Vidyasagar, we establish the local and global stability results of the equilibrium points. Furthermore, we establish an interesting relationship between the mosquito reproduction number ℛ
v
and the basic reproduction number ℛ0. It then follows that aquatic stages and behavior of adult mosquitoes have a significant impact on disease transmission dynamics. Finally, some numerical simulations are carried out to support the theoretical findings of the study.
Subject
Applied Mathematics,Numerical Analysis,Statistics and Probability,Analysis
Reference39 articles.
1. [1] A. Abdelrazec, J. Belair, C. Shan, and H. Zhu, Modelling the spread of dengue with limited public health resources, Math. Biosci., 271 (2015) 136–145.
2. [2] F. B. Agusto, A. B. Gumel, and P. E. Parham, Qualitative assessment of the role of temperature variations on malaria transmission dynamics, J. Biol. Syst., 23 (2015), no. 4, 597-630.
3. [3] Z. Bai and Y. Zhou, Global dynamics of an SEIRS epidemic model with periodic vaccination and seasonal contact rate, Nonlinear Anal. : Real World Appl., 13 (2012), no. 3, 1060-1068.
4. [4] N. J. T. Bailey, The mathematical theory of infectious diseases and its application, London, (1975).
5. [5] D. Bernouilli, Essai d’une nouvelle analyse de la mortalité causée par la petite vérole et des avantages de l’inoculation pour la prévenir, Histoire de l’académie royale des sciences avec les mémoires de mathématique et de physique tirés des registres de cette académie, (1966).
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献