Mathematical modeling of the dynamics of vector-borne diseases transmitted by mosquitoes : taking into account aquatic stages and gonotrophic cycle

Author:

Diabaté Abou Bakari1,Sangaré Boureima1,Koutou Ousmane2

Affiliation:

1. Université Nazi BONI , Laboratoire de Mathématiques Informatique et Applications , Burkina-Faso

2. Centre Universitaire Polytechnique de Kaya , Université Joseph Ki-Zerbo, Laboratoire de Mathématiques et Informatique , Burkina-Faso

Abstract

Abstract In this paper, we formulate a mathematical model of vector-borne disease dynamics. The model is constructed by considering two models : a baseline model of vector population dynamics due to Lutambi et al. that takes into account the development of the aquatic stages and the female mosquitoes gonotrophic cycle and an SI-SIR model describing the interaction between mosquitoes and human hosts. We briefly study the baseline model of vectors dynamics and, for the transmission model, we explicitly compute the equilibrium points, and by using the method of Van den Driesshe and J. Watmough, we derive the basic reproduction number ℛ0. Otherwise, thanks to Lyapunov’s principle, Routh-Hurwitz criteria and a favorable result due to Vidyasagar, we establish the local and global stability results of the equilibrium points. Furthermore, we establish an interesting relationship between the mosquito reproduction number ℛ v and the basic reproduction number ℛ0. It then follows that aquatic stages and behavior of adult mosquitoes have a significant impact on disease transmission dynamics. Finally, some numerical simulations are carried out to support the theoretical findings of the study.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Numerical Analysis,Statistics and Probability,Analysis

Reference39 articles.

1. [1] A. Abdelrazec, J. Belair, C. Shan, and H. Zhu, Modelling the spread of dengue with limited public health resources, Math. Biosci., 271 (2015) 136–145.

2. [2] F. B. Agusto, A. B. Gumel, and P. E. Parham, Qualitative assessment of the role of temperature variations on malaria transmission dynamics, J. Biol. Syst., 23 (2015), no. 4, 597-630.

3. [3] Z. Bai and Y. Zhou, Global dynamics of an SEIRS epidemic model with periodic vaccination and seasonal contact rate, Nonlinear Anal. : Real World Appl., 13 (2012), no. 3, 1060-1068.

4. [4] N. J. T. Bailey, The mathematical theory of infectious diseases and its application, London, (1975).

5. [5] D. Bernouilli, Essai d’une nouvelle analyse de la mortalité causée par la petite vérole et des avantages de l’inoculation pour la prévenir, Histoire de l’académie royale des sciences avec les mémoires de mathématique et de physique tirés des registres de cette académie, (1966).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3