Affiliation:
1. Department of Geodesy and Geoinformation, 27259TU Wien, Vienna, Austria
Abstract
AbstractIn this contribution, the minimum detectable bias (MDB) as well as the statistical tests to identify disturbed observations are introduced for the Gauss-Helmert model. Especially, if the observations are uncorrelated, these quantities will have the same structure as in the Gauss-Markov model, where the redundancy numbers play a key role. All the derivations are based on one-dimensional and additive observation errors respectively offsets which are modeled as additional parameters to be estimated. The formulas to compute these additional parameters with the corresponding variances are also derived in this contribution. The numerical examples of plane fitting and yaw computation show, that the MDB is also in the GHM an appropriate measure to analyze the ability of an implemented least-squares algorithm to detect if outliers are present. Two sources negatively influencing detectability are identified: columns close to the zero vector in the observation matrix B and sub-optimal configuration in the design matrix A. Even if these issues can be excluded, it can be difficult to identify the correct observation as being erroneous. Therefore, the correlation coefficients between two test values are derived and analyzed. Together with the MDB these correlation coefficients are an useful tool to assess the inner reliability – and therefore the detection and identification of outliers – in the Gauss-Helmert model.
Subject
Earth and Planetary Sciences (miscellaneous),Engineering (miscellaneous),Modelling and Simulation
Reference74 articles.
1. Robust estimation of a location parameter;The Annals of Mathematical Statistics,1964
2. Outlier detection by the EM algorithm for laser scanning in rectangular and polar coordinate systems;Journal of Applied Geodesy,2015
3. Robust total least squares with reweighting iteration for three-dimensional similarity transformation;Survey Review,2014
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献