Geometric and statistical interpretation of correlation between fault tests in integrated GPS/INS systems

Author:

Almagbile AliORCID

Abstract

Abstract Fault detection and identification (FDI) in either a stand-alone GPS or in integrated GPS/INS systems is essential for improving the quality of positioning, navigation, and many other applications. The assumption that the observations include a single fault has been considered intensively in literature. However, this assumption may not necessarily be valid due to the fact that multiple faults may exist simultaneously. In this study, separability of multiple faults in GPS/INS integration systems has been analysed geometrically and statistically. This has been achieved through testing how large correlation coefficient between any pair of fault tests statistics increases the probability of faults misidentification. In addition, a new calculation procedure of correlation coefficient when four faults appear in the observations has been developed. This procedure considers calculation the correlation between a single and a punch of measurements combined together. The results show that there is a strong relationship between the value of correlation coefficient and the probability of misidentification. Furthermore, a significant relationship between the correlation and the fault test values can be found when splitting the measurements combinations into groups based on the combination similarity. Nevertheless, this relationship can be defined without splitting the measurements into groups when using a new correlation procedure for four faults case. The geometric representation shows that large correlation coefficient reflects small angle between the correlation and the x-axis; whereas the angle between the fault-test vectors and the x-axis becomes wider when a tiny correlation exist.

Publisher

Walter de Gruyter GmbH

Subject

Earth and Planetary Sciences (miscellaneous),Engineering (miscellaneous),Modelling and Simulation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3