An Institutionalist Approach to AI Ethics: Justifying the Priority of Government Regulation over Self-Regulation

Author:

Ferretti Thomas1ORCID

Affiliation:

1. Department of Philosophy Logic and Scientific Method , The London School of Economics and Political Science , London , UK

Abstract

Abstract This article explores the cooperation of government and the private sector to tackle the ethical dimension of artificial intelligence (AI). The argument draws on the institutionalist approach in philosophy and business ethics defending a ‘division of moral labor’ between governments and the private sector (Rawls 2001; Scheffler and Munoz-Dardé 2005). The goal and main contribution of this article is to explain how this approach can provide ethical guidelines to the AI industry and to highlight the limits of self-regulation. In what follows, I discuss three institutionalist claims. First, principles of AI ethics should be validated through legitimate democratic processes. Second, compliance with these principles should be secured in a stable way. Third, their implementation in practice should be as efficient as possible. If we accept these claims, there are good reasons to conclude that, in many cases, governments implementing hard regulation are in principle (if not yet in practice) the best instruments to secure an ethical development of AI systems. Where adequate regulation exists, firms should respect the law. But when regulation does not yet exist, helping governments build adequate regulation should be businesses’ ethical priority, not self-regulation.

Publisher

Walter de Gruyter GmbH

Subject

History and Philosophy of Science,Sociology and Political Science,Philosophy

Reference69 articles.

1. Ajunwa, I., and R. Schlund. 2020. “Algorithms and the Social Organization of Work.” In The Oxford Handbook of Ethics of AI, edited by M. D. Dubber, F. Pasquale, and S. Das, 805–22. Oxford: Oxford University Press.

2. Anderson, E. 2017. Private Government: How Employers Rule Our Lives (and Why We Don’t Talk About It). Princeton: Princeton University Press.

3. Andrus, M., U. Bhatt, and A. Xiang. 2020. “Multistakeholder Approaches to Explainable Machine Learning.” Partnership on AI. Retrieved from https://www.partnershiponai.org/multistakeholder-explainableml/.

4. Andrus, M., E. Spitzer, and A. Xiang. 2020. “Working to Address Algorithmic Bias? Don’t Overlook the Role of Demographic Data.” Partnership on AI. Retrieved from https://www.partnershiponai.org/demographic-data/.

5. Baumol, W. J. 1974. “Business Responsibility and Economic Behavior.” In Managing the Socially Responsible Corporation, edited by M. Anshen, 59–71. New York: MacMillan.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3