First molecular identification of an agent of diplostomiasis, Diplostomum pseudospathaceum (Niewiadomska 1984) in the United Kingdom and its genetic relationship with populations in Europe

Author:

Enabulele Egie Elisha,Awharitoma Agnes Ogheneruemu,Lawton Scott P.,Kirk Ruth S.

Abstract

Abstract Trematode genus Diplostomum comprises of parasitic species which cause diplostomiasis, the ‘white eye’ disease in fish and heavy infection can result in mortality. The increasing availability of DNA sequences of accurately identified Diplostomum species on public data base presently enables the rapid identification of species from novel sequences. We report the first molecular evidence of the occurrence of D. pseudospathaceum in the United Kingdom. Two gene regions, nuclear internal transcribed spacer cluster (ITS1-5.8S-ITS2) and mitochondrial cytochrome c oxidase subunit 1 (cox1) of cercariae from infected aquatic snails, Lymnaea stagnalis collected in several locations in Southern England were sequenced. Phylogenetic analysis based on both sequenced genes revealed that the novel sequences were D. pseudospathaceum. Molecular diversity analysis of published D. pseudospathaceum cox1 sequences from seven countries in Europe and the novel sequences from the present study revealed high diversity, but low nucleotide divergence and a lack of gene differentiation between the populations. Haplotype network analysis depicted a star-like pattern and revealed a lack of geographic structure in the population. Fixation indices confirmed gene flow between populations and we suspect high levels of dispersal facilitated by highly mobile second intermediate (fish) and definitive (piscivorous birds) host may be driving gene flow between populations. Neutrality tests and mismatch distribution indicated recent population growth/expansion for D. pseudospathaceum in Europe.

Publisher

Springer Science and Business Media LLC

Subject

Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3