Metallography and Biomimetics – Or New Surfaces Without Chemistry?

Author:

Fox T.1,Lößlein S. M.1,Müller D. W.1,Mücklich F.1

Affiliation:

1. Lehrstuhl für Funktionswerkstoffe, Universität des Saarlandes , Campus D3 3, 66123 Saarbrücken , Deutschland

Abstract

Abstract Fingerprints, a butterfly’s wings, or a lotus leaf: when it comes to surfaces, there is no such thing as coincidence in animated nature. Based on their surfaces, animals and plants control their wettability, their swimming resistance, their appearance, and much more. Evolution has optimized these surfaces and developed a microstructure that fits every need. It is all the more astonishing that, with regard to technical surfaces, man confines himself to random roughnesses or “smooth” surfaces. It is surely not a problem of a lack of incentives: structured surfaces have already provided evidence of optimizing friction and wear [1, 2, 3, 4], improving electrical contacts [5, 6], making implants biocompatible [7, 8], keeping away harmful bacteria [9], and much more. How come we continue counting on grinding, polishing, sandblasting, or etching? As so often, the problem can be found in economic cost effectiveness. It is possible to produce interesting structures such as those of the feather in Fig. 1. However, generating fine structures in the micro and nanometer range usually requires precise processing techniques. This is complex, time-consuming, and cannot readily be integrated into a manufacturing process. Things are different with Direct Laser Interference Patterning, DLIP) [10, 11]. This method makes use of the strong interference pattern of overlapped laser beams as a “stamp” to provide an entire surface area with dots, lines, or other patterns – in one shot. It thus saves time, allows for patterning speeds of up to 1 m2/min and does it without an elaborate pre- or post-treatment [10, 12]. The following article intends to outline how the method works, which structures can be generated, and how the complex multi-scale structures that nature developed over millions of years can be replicated in only one step.

Publisher

Walter de Gruyter GmbH

Subject

Metals and Alloys,Mechanics of Materials,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3