Character deflations and a generalization of the Murnaghan–Nakayama rule

Author:

Evseev Anton1,Paget Rowena2,Wildon Mark3

Affiliation:

1. School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom

2. School of Mathematics, Statistics & Actuarial Science, University of Kent, Canterbury, Kent CT2 7NF, United Kingdom

3. Department of Mathematics, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom

Abstract

Abstract Given natural numbers m and n, we define a deflation map from the characters of the symmetric group S mn to the characters of Sn . This map is obtained by first restricting a character of S mn to the wreath product Sm Sn , and then taking the sum of the irreducible constituents of the restricted character on which the base group Sm × ⋯ × Sm acts trivially. We prove a combinatorial formula which gives the values of the images of the irreducible characters of S mn under this map. We also prove an analogous result for more general deflation maps in which the base group is not required to act trivially. These results generalize the Murnaghan–Nakayama rule and special cases of the Littlewood–Richardson rule. As a corollary we obtain a new combinatorial formula for the character multiplicities that are the subject of the long-standing Foulkes' Conjecture. Using this formula we verify Foulkes' Conjecture in some new cases.

Publisher

Walter de Gruyter GmbH

Subject

Algebra and Number Theory

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Proof of the Plethystic Murnaghan–Nakayama Rule Using Loehr’s Labelled Abacus;Annals of Combinatorics;2024-05-17

2. A Spin Analog of the Plethystic Murnaghan–Nakayama Rule;Annals of Combinatorics;2024-02-06

3. Universal characters twisted by roots of unity;Algebraic Combinatorics;2024-01-08

4. On plethysms and Sylow branching coefficients;Algebraic Combinatorics;2023-05-03

5. Vanishing symmetric Kronecker coefficients;Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry;2019-10-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3