Almost simple groups with no product of two primes dividing three character degrees

Author:

Aziziheris Kamal1,Ahmadpour Mohammad2

Affiliation:

1. Department of Pure Mathematics , Faculty of Mathematical Sciences , University of Tabriz , Tabriz ; and School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran , Iran

2. Department of Mathematics , Faculty of Sciences , University of Mohaghegh Ardabili , 56199-11367 , Ardabil , Iran

Abstract

Abstract Let Irr ( G ) {\operatorname{Irr}(G)} denote the set of complex irreducible characters of a finite group G, and let cd ( G ) {\operatorname{cd}(G)} be the set of degrees of the members of Irr ( G ) {\operatorname{Irr}(G)} . For positive integers k and l, we say that the finite group G has the property 𝒫 k l {\mathcal{P}^{l}_{k}} if, for any distinct degrees a 1 , a 2 , , a k cd ( G ) {a_{1},a_{2},\dots,a_{k}\in\operatorname{cd}(G)} , the total number of (not necessarily different) prime divisors of the greatest common divisor gcd ( a 1 , a 2 , , a k ) {\gcd(a_{1},a_{2},\dots,a_{k})} is at most l - 1 {l-1} . In this paper, we classify all finite almost simple groups satisfying the property 𝒫 3 2 {\mathcal{P}_{3}^{2}} . As a consequence of our classification, we show that if G is an almost simple group satisfying 𝒫 3 2 {\mathcal{P}_{3}^{2}} , then | cd ( G ) | 8 {\lvert\operatorname{cd}(G)\rvert\leqslant 8} .

Funder

Institute for Research in Fundamental Sciences

Publisher

Walter de Gruyter GmbH

Subject

Algebra and Number Theory

Reference22 articles.

1. D. Benjamin, Coprimeness among irreducible character degrees of finite solvable groups, Proc. Amer. Math. Soc. 125 (1997), no. 10, 2831–2837.

2. R. W. Carter, Finite Groups of Lie Type, Pure Appl. Math. (New York), John Wiley & Sons, New York, 1985.

3. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups, Oxford University Press, Eynsham, 1985.

4. M. Ghaffarzadeh, Character degrees of extensions of the Suzuki groups  2⁢B2⁢(q2){\mbox{ }^{2}B_{2}(q^{2})}, J. Algebra Appl. 17 (2018), no. 1, Article ID 1850006.

5. M. Ghaffarzadeh, M. Ghasemi, M. L. Lewis and H. P. Tong-Viet, Nonsolvable groups with no prime dividing four character degrees, Algebr. Represent. Theory 20 (2017), no. 3, 547–567.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3