Regular dessins uniquely determined by a nilpotent automorphism group

Author:

Wang Na-Er1,Nedela Roman2,Hu Kan1

Affiliation:

1. School of Mathematics, Physics and Information Science , Zhejiang Ocean University , Zhoushan , Zhejiang 316022 ; and Key Laboratory of Oceanographic Big Data Mining & Application of Zhejiang Province, Zhoushan, Zhejiang 316022 , P. R. China

2. Department of Mathematics , Faculty of Applied Sciences , University of West Bohemia , NTIS FAV, Pilsen , Czech Republic ; and Mathematical Institute, Slovak Academy of Sciences, Banská Bystrica , Slovak Republic

Abstract

Abstract It is well known that the automorphism group of a regular dessin is a two-generator finite group, and the isomorphism classes of regular dessins with automorphism groups isomorphic to a given finite group G are in one-to-one correspondence with the orbits of the action of Aut ( G ) {{\mathrm{Aut}}(G)} on the ordered generating pairs of G. If there is only one orbit, then up to isomorphism the regular dessin is uniquely determined by the group G and it is called uniquely regular. In this paper we investigate the classification of uniquely regular dessins with a nilpotent automorphism group. The problem is reduced to the classification of finite maximally automorphic p-groups G, i.e., the order of the automorphism group of G attains Hall’s upper bound. Maximally automorphic p-groups of nilpotency class three are classified.

Publisher

Walter de Gruyter GmbH

Subject

Algebra and Number Theory

Reference24 articles.

1. G. V. Belyĭ, Galois extensions of a maximal cyclotomic field, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 2, 267–276.

2. Y. Berkovich, Groups of Prime Power Order. Vol. 1, De Gruyter Exp. Math. 46, De Gruyter, Berlin, 2008.

3. D. Garrison and L.-C. Kappe, On some subnormality conditions in metabelian groups, Computational Group Theory and the Theory of Groups, Contemp. Math. 470, American Mathematical Society, Providence (2008), 89–103.

4. G. González-Diez and A. Jaikin-Zapirain, The absolute Galois group acts faithfully on regular dessins and on Beauville surfaces, Proc. Lond. Math. Soc. (3) 111 (2015), no. 4, 775–796.

5. A. Grothendieck, Esquisse d’un programme, Geometric Galois Actions. 1, London Math. Soc. Lecture Note Ser. 242, Cambridge University Press, Cambridge (1997), 5–48.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Uniquely regular dessins with nilpotent automorphism groups of odd prime power order;Journal of Physics: Conference Series;2023-12-01

2. Action of Aut(G) on the set of maximal subgroups of p-groups;Applied Mathematics and Nonlinear Sciences;2022-09-05

3. Circular regular dessins;Journal of Algebraic Combinatorics;2021-01-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3