Affiliation:
1. Department of Mathematics and Technologies of Programming , Francisk Skorina Gomel State University , Gomel 246019 , Belarus
Abstract
Abstract
Let
𝔛
{\mathfrak{X}}
be a class of groups. A subgroup U of a group G is called
𝔛
{\mathfrak{X}}
-maximal in G
provided that (a)
U
∈
𝔛
{U\in\mathfrak{X}}
, and (b) if
U
≤
V
≤
G
{U\leq V\leq G}
and
V
∈
𝔛
{V\in\mathfrak{X}}
, then
U
=
V
{U=V}
. A chief factor
H
/
K
{H/K}
of G is called
𝔛
{\mathfrak{X}}
-eccentric in G provided
(
H
/
K
)
⋊
G
/
C
G
(
H
/
K
)
∉
𝔛
{(H/K)\rtimes G/C_{G}(H/K)\not\in\mathfrak{X}}
. A group G is called a quasi-
𝔛
{\mathfrak{X}}
-group if for every
𝔛
{\mathfrak{X}}
-eccentric chief factor
H
/
K
{H/K}
and every
x
∈
G
{x\in G}
, x induces an inner automorphism on
H
/
K
{H/K}
. We use
𝔛
*
{\mathfrak{X}^{*}}
to denote the class of all quasi-
𝔛
{\mathfrak{X}}
-groups.
In this paper we describe all hereditary saturated formations
𝔉
{\mathfrak{F}}
containing all nilpotent groups such that the
𝔉
*
{\mathfrak{F}^{*}}
-hypercenter of G coincides with the intersection of all
𝔉
*
{\mathfrak{F}^{*}}
-maximal subgroups of G for every group G.
Subject
Algebra and Number Theory
Reference15 articles.
1. R. Baer,
Group elements of prime power index,
Trans. Amer. Math. Soc. 75 (1953), 20–47.
2. A. Ballester-Bolinches and L. M. Ezquerro,
Classes of Finite Groups,
Math. Appl. (Springer) 584,
Springer, Dordrecht, 2006.
3. J. C. Beidleman and H. Heineken,
A note on intersections of maximal ℱ\mathscr{F}-subgroups,
J. Algebra 333 (2011), 120–127.
4. K. Doerk and T. Hawkes,
Finite Soluble Groups,
De Gruyter Exp. Math. 4,
De Gruyter, Berlin, 1992.
5. W. Gaschütz,
Über modulare Darstellungen endlicher Gruppen, die von freien Gruppen induziert werden,
Math. Z. 60 (1954), 274–286.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献