Twisted conjugacy classes in unitriangular groups

Author:

Nasybullov Timur1

Affiliation:

1. Department of Mathematics , KU Leuven KULAK , Etienne Sabbelaan 53, 8500 Kortrijk , Belgium

Abstract

Abstract Let R be an integral domain of characteristic zero. In this note we study the Reidemeister spectrum of the group UT n ( R ) {{\rm UT}_{n}(R)} of unitriangular matrices over R. We prove that if R + {R^{+}} is finitely generated and n > 2 | R * | {n>2|R^{*}|} , then UT n ( R ) {{\rm UT}_{n}(R)} possesses the R {R_{\infty}} -property, i.e. the Reidemeister spectrum of UT n ( R ) {{\rm UT}_{n}(R)} contains only {\infty} , however, if n | R * | {n\leq|R^{*}|} , then the Reidemeister spectrum of UT n ( R ) {{\rm UT}_{n}(R)} has nonempty intersection with {\mathbb{N}} . If R is a field and n 3 {n\geq 3} , then we prove that the Reidemeister spectrum of UT n ( R ) {{\rm UT}_{n}(R)} coincides with { 1 , } {\{1,\infty\}} , i.e. in this case UT n ( R ) {{\rm UT}_{n}(R)} does not possess the R {R_{\infty}} -property.

Funder

Fonds Wetenschappelijk Onderzoek

Publisher

Walter de Gruyter GmbH

Subject

Algebra and Number Theory

Reference20 articles.

1. K. Dekimpe and D. Gonçalves, The R∞{R_{\infty}} property for free groups, free nilpotent groups and free solvable groups, Bull. Lond. Math. Soc. 46 (2014), no. 4, 737–746.

2. K. Dekimpe and D. L. Gonçalves, The R∞{R_{\infty}} property for nilpotent quotients of surface groups, Trans. London Math. Soc. 3 (2016), no. 1, 28–46.

3. K. Dekimpe, S. Tertooy and A. Vargas, Fixed points of diffeomorphisms of nilmanifolds with a free nilpotent fundamental group, preprint (2017), https://arxiv.org/abs/1710.09662.

4. G.-J. Dugardein, Nielsen periodic point theory on infra-nilmanifolds, Bull. Belg. Math. Soc. Simon Stevin 24 (2017), no. 4, 537–566.

5. A. Fel’shtyn and R. Hill, Reidemeister zeta function with applications to Nielsen theory and a connection with Reidemeister torsion, K-Theory 8 (1994), 367–393.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3