On laminar groups, Tits alternatives and convergence group actions on 𝑆2

Author:

Alonso Juan1,Baik Hyungryul2,Samperton Eric3

Affiliation:

1. Centro de Matemática , Facultad de Ciencias , Universidad de la República , Iguá 4225 , Montevideo C.P. 11400 , Uruguay

2. Department of Mathematical Sciences , KAIST , 291 Daehak-ro Yuseong-gu , Daejeon , 34141 , South Korea

3. Department of Mathematics , South Hall, Room 6607 , University of California , Santa Barbara , CA 93106-3080 , USA

Abstract

Abstract Following previous work of the second author, we establish more properties of groups of circle homeomorphisms which admit invariant laminations. In this paper, we focus on a certain type of such groups, so-called pseudo-fibered groups, and show that many 3-manifold groups are examples of pseudo-fibered groups. We then prove that torsion-free pseudo-fibered groups satisfy a Tits alternative. We conclude by proving that a purely hyperbolic pseudo-fibered group acts on the 2-sphere as a convergence group. This leads to an interesting question if there are examples of pseudo-fibered groups other than 3-manifold groups.

Publisher

Walter de Gruyter GmbH

Subject

Algebra and Number Theory

Reference27 articles.

1. H. Baik, Fuchsian groups, circularly ordered groups and dense invariant laminations on the circle, Geom. Topol. 19 (2015), no. 4, 2081–2115.

2. H. Baik and E. Samperton, Spaces of invariant circular orders of groups, Groups Geom. Dyn. 12 (2018), no. 2, 721–763.

3. B. H. Bowditch, A topological characterisation of hyperbolic groups, J. Amer. Math. Soc. 11 (1998), no. 3, 643–667.

4. D. Calegari, Foliations and geometrization of 3-manifolds, Lecture note for the course ’Foliations and 3-manifolds’ at University of Chicago, (2003).

5. D. Calegari, Foliations and the Geometry of 3-manifolds, Oxford Math. Monogr., Oxford University Press, Oxford, 2007.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Laminar Groups and 3-Manifolds;In the Tradition of Thurston;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3