The local structure of the free boundary in the fractional obstacle problem

Author:

Focardi Matteo1ORCID,Spadaro Emanuele2ORCID

Affiliation:

1. Dipartimento di Matematica e Informatica , Università degli Studi di Firenze , Viale Morgagni 67/A, 50134 Firenze , Italy

2. Dipartimento di Matematica , Università di Roma La Sapienza , P.le Aldo Moro 5, 00185 Rome , Italy

Abstract

Abstract Building upon the recent results in [M. Focardi and E. Spadaro, On the measure and the structure of the free boundary of the lower-dimensional obstacle problem, Arch. Ration. Mech. Anal. 230 2018, 1, 125–184] we provide a thorough description of the free boundary for the solutions to the fractional obstacle problem in n + 1 {\mathbb{R}^{n+1}} with obstacle function φ (suitably smooth and decaying fast at infinity) up to sets of null n - 1 {{\mathcal{H}}^{n-1}} measure. In particular, if φ is analytic, the problem reduces to the zero obstacle case dealt with in [M. Focardi and E. Spadaro, On the measure and the structure of the free boundary of the lower-dimensional obstacle problem, Arch. Ration. Mech. Anal. 230 2018, 1, 125–184] and therefore we retrieve the same results: (i) local finiteness of the ( n - 1 ) {(n-1)} -dimensional Minkowski content of the free boundary (and thus of its Hausdorff measure), (ii) n - 1 {{\mathcal{H}}^{n-1}} -rectifiability of the free boundary, (iii) classification of the frequencies and of the blowups up to a set of Hausdorff dimension at most ( n - 2 ) {(n-2)} in the free boundary. Instead, if φ C k + 1 ( n ) {\varphi\in C^{k+1}(\mathbb{R}^{n})} , k 2 {k\geq 2} , similar results hold only for distinguished subsets of points in the free boundary where the order of contact of the solution with the obstacle function φ is less than k + 1 {k+1} .

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Analysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Epiperimetric inequalities in the obstacle problem for the fractional Laplacian;Calculus of Variations and Partial Differential Equations;2024-06-25

2. $$C^{2,\alpha }$$ regularity of free boundaries in parabolic non-local obstacle problems;Calculus of Variations and Partial Differential Equations;2022-12-23

3. The regular free boundary in the thin obstacle problem for degenerate parabolic equations;St. Petersburg Mathematical Journal;2021-05-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3