Confined elasticae and the buckling of cylindrical shells

Author:

Wojtowytsch Stephan1

Affiliation:

1. Program in Applied and Computational Mathematics , Princeton University , 205 Fine Hall – Washington Road , Princeton , NJ 08544 , USA

Abstract

Abstract For curves of prescribed length embedded into the unit disk in two dimensions, we obtain scaling results for the minimal elastic energy as the length just exceeds 2 π {2\pi} and in the large length limit. In the small excess length case, we prove convergence to a fourth-order obstacle-type problem with integral constraint on the real line which we then solve. From the solution, we obtain the energy expansion 2 π + Θ δ 1 3 + o ( δ 1 3 ) {2\pi+\Theta\delta^{\frac{1}{3}}+o(\delta^{\frac{1}{3}})} when a curve has length 2 π + δ {2\pi+\delta} and determine first order coefficient Θ 37 {\Theta\approx 37} . We present an application of the scaling result to buckling in two-layer cylindrical shells where we can determine an explicit bifurcation point between compression and buckling in terms of universal constants and material parameters scaling with the thickness of the inner shell.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Analysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Li–Yau type inequality for curves in any codimension;Calculus of Variations and Partial Differential Equations;2023-08-22

2. Computing confined elasticae;Advances in Continuous and Discrete Models;2022-10-21

3. A Li–Yau inequality for the 1-dimensional Willmore energy;Advances in Calculus of Variations;2021-07-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3