Synergism between lignite and high-sulfur petroleum coke in CO2 gasification

Author:

Mao Lirui12,Liu Tao12,Zhao Yanlin1,Zheng Mingdong21

Affiliation:

1. School of Chemical Engineering, Anhui University of Science and Technology , Huainan , 232001 , China

2. Insititute of Energy, Hefei Comprehensive National Science Center , Hefei , 230031 , China

Abstract

Abstract High-sulfur petroleum coke (PC) as solid waste has high treatment cost. Gasification technology can utilize PC and lignite for co-gasification. Organically combining the two is the key to expanding the adaptability of gasification raw materials. This work used thermal analysis technology to study the gasification reaction of PC and lignite systems in a CO2 atmosphere. The results show that the starting and end temperatures of the co-gasification of lignite/high-sulfur PC are lower than those of pure coke. The improved carbonization rate and gasification reaction index indicate that lignite improves the gasification performance. The gasification synergy factors are all greater than 1, indicating that the co-gasification process produces obvious synergism, and the synergism is more obvious in the gasification stage after 800°C. The lignite ash is gradually enriched on the surface of high-sulfur PC with the temperature increase, and the Ca and Fe elements have an obvious catalytic effect, but the catalytic effect has a saturation value. Ashes from lignite used as a multi-component gasification catalyst can increase the overall reactivity in the lignite/high-sulfur PC system, which can broaden the selection of gasification raw materials, and make efficient use of the resource characteristics of both.

Publisher

Walter de Gruyter GmbH

Subject

Health, Toxicology and Mutagenesis,Industrial and Manufacturing Engineering,Fuel Technology,Renewable Energy, Sustainability and the Environment,General Chemical Engineering,Environmental Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3