Photocatalytic properties of ZnFe-mixed oxides synthesized via a simple route for water remediation

Author:

Hadnadjev-Kostic Milica1,Karanovic Djurdjica1,Vulic Tatjana1,Dostanić Jasmina2,Lončarević Davor2

Affiliation:

1. Faculty of Technology Novi Sad, University of Novi Sad , Bul. Cara Lazara 1, 21000 Novi Sad , Serbia

2. Department of Catalysis and Chemical Engineering, Institute of Chemistry, Technology and Metallurgy, University of Belgrade , Njegoševa 12, 11000 Belgrade , Serbia

Abstract

Abstract ZnFe photocatalysts have been increasingly investigated for water remediation due to the high demands in this field, such as activity, toxicity, cost, and stability. The presented study was focused on the simple, safe, non-toxic, and eco-friendly synthesis and characterization of ZnFe-mixed metal oxides in correlation with their functional properties. Photocatalytic performance of these materials was evaluated by rhodamine B photodegradation under simulated solar light irradiation. The synthesized mixed oxides contained hexagonal wurtzite ZnO as the predominant phase, whereas, after thermal treatment, the formation of the spinel-structured ZnFe2O4 phase was observed. The photocatalysts with the additional spinel phase and thermally treated at 300°C and 500°C exhibited superior photocatalytic activity probably due to the highest amount of the ZnFe2O4 spinel phase, favourable mesoporous structure, and an optimal energy band gap of ∼2.30 eV that initiated higher light-harvesting efficiency. The rhodamine B photodegradation followed zero-order kinetics, indicating complete coverage of active sites by the pollutant substrate. Additionally, photocatalysts showed the highest efficiency at the natural pH (6.8), being in accordance with green synthesis principles. Simple, green route assembling synthesis method, high photodegradation efficiency, and good reusability make these ZnFe-mixed oxides great candidates for potential application in practical wastewater treatments.

Publisher

Walter de Gruyter GmbH

Subject

Health, Toxicology and Mutagenesis,Industrial and Manufacturing Engineering,Fuel Technology,Renewable Energy, Sustainability and the Environment,General Chemical Engineering,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3