Recovery of critical metals from carbonatite-type mineral wastes: Geochemical modeling investigation of (bio)hydrometallurgical leaching of REEs

Author:

Odimba Nneka Joyce1,Khalidy Reza1,Bakhshoodeh Reza2,Santos Rafael M.1

Affiliation:

1. School of Engineering, University of Guelph , Guelph , Ontario N1G2W1 , Canada

2. Department of Civil, Environmental and Mining Engineering, The University of Western Australia , Perth , Western Australia 6009 , Australia

Abstract

Abstract Rare earth elements (REEs) are typically found in low concentrations within natural rocks that make up mine tailings, such as carbonates in association with silicates within carbonatite igneous rocks, so it is of interest to develop (bio)hydrometallurgical ways to liberate them from the silicate matrix. This work investigated, through geochemical modeling, the extraction of europium and ytterbium carbonates from rocks containing one of four silicates (chrysotile, forsterite, montmorillonite, and phlogopite) via chemical (mineral acid) or biological (organic acid) leaching. The results indicated conditions that led to either congruent or incongruent dissolution of the mineral phases and the formation of transient mineral phases. Chemical leaching models suggest that REE carbonates are recoverable in one-step leaching from forsterite and chrysotile rocks, while they are recoverable in a secondary leaching step from montmorillonite and phlogopite rocks. Gibbsite as a transient phase is shown to complicate REE recovery, potentially requiring reactive extraction. REEs have the potential to be recovered from silicate rocks via chemoorganotrophic bioleaching, but the process configuration would differ depending on the predominant minerals that make up the rock, and the type of REE present in it.

Publisher

Walter de Gruyter GmbH

Subject

Health, Toxicology and Mutagenesis,Industrial and Manufacturing Engineering,Fuel Technology,Renewable Energy, Sustainability and the Environment,General Chemical Engineering,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3